Planck : les données définitives de la mission soutiennent fortement le modèle cosmologique standard
La mission Planck de l’ESA dévoilait en 2013 une nouvelle image du cosmos : la capture sur tout le ciel du rayonnement micro-ondes généré au début de l’univers. Cette première lumière émise par l’univers offre une multitude d’informations sur son contenu, son taux d’expansion, et les grumeaux primordiaux, précurseurs des galaxies. Le consortium Planck publie la version intégrale et définitive de ces données et les articles associés sur le site web de l'ESA le 17 juillet 2018. Les articles sont par ailleurs soumis à la revue Astronomy & Astrophysics. Avec sa fiabilité accrue et ses données sur la polarisation du rayonnement fossile [1], la mission Planck corrobore le modèle cosmologique standard avec une précision inégalée sur ces paramètres, même s’il subsiste encore quelques anomalies. Pour ces travaux, le consortium Planck a mobilisé environ trois cents chercheurs, notamment du CNRS, du CNES, du CEA et de plusieurs universités en France.
Lancé en 2009, le satellite Planck de l’ESA a cartographié le fond diffus cosmologique, un rayonnement dans le domaine micro-onde, émis 380 000 ans après le Big Bang, alors que l’Univers se réduisait à un gaz chaud et quasi homogène. D’infimes variations de sa température renseignent notamment sur son contenu, son taux d’expansion et sur les propriétés des fluctuations primordiales qui ont donné naissance aux galaxies. Une première analyse de l’ensemble des données a été publiée en 2015, sous la forme de huit cartographies complètes du ciel qui incluaient la polarisation du fond diffus cosmologique, qui détermine comment, au niveau microscopique, vibrent les ondes qui composent la lumière. Cette information cruciale porte l’empreinte de la dernière interaction entre la lumière et la matière dans l’Univers primordial, mais son analyse n’était encore que préliminaire.
La polarisation du rayonnement fossile fournit un signal 50 à 100 fois plus faible que celui de sa température et 10 à 20 fois plus faible que celui émis par l'émission polarisée des poussières galactiques. Grâce à l’instrument HFI (high frequency instrument), le satellite Planck a malgré tout obtenu une carte très précise de la polarisation primordiale sur tout le ciel. C’est une première, riche d’enseignements.
Exhaustives, définitives et plus fiables, les données publiées le 17 juillet 2018 ont confirmé les premiers résultats, très bien décrits à base de matière ordinaire, de matière noire froide et d’énergie noire de nature inconnue, avec une phase d’inflation [2] à son tout début. Ce modèle cosmologique peut maintenant se déduire en utilisant indépendamment les données de température ou de polarisation, avec une précision comparable. Ceci renforce considérablement le modèle standard des cosmologues, aussi surprenant soit-il [3]. Ces résultats sont répartis dans une dizaine de publications scientifiques, impliquant environ trois cents chercheurs.
Quelques anomalies ou imperfections subsistent cependant. En particulier, le taux d’expansion de l’Univers diffère de quelques pour cent selon qu’on se base sur les données du télescope spatial Hubble ou de la mission Planck. La question est ouverte et de nombreux télescopes vont maintenant tenter d’avoir le fin mot de l’histoire.
La collaboration Planck a reçu cette année le prix Peter Gruber de cosmologie et implique en France :
- APC, Astroparticules et cosmologie (Université Paris Diderot/CNRS/CEA/Observatoire de Paris), à Paris.
- IAP, Institut d'astrophysique de Paris (CNRS/Sorbonne université), à Paris.
- IAS, Institut d'astrophysique spatiale (Université Paris-Sud/CNRS), à Orsay.
- Institut Néel (CNRS), à Grenoble.
- IPAG, Institut de planétologie et d'astrophysique (CNRS/Université Grenoble Alpes) [4], à Grenoble.
- IRAP, Institut de recherche en astrophysique et planétologie (Université Toulouse III - Paul Sabatier/CNRS/CNES) [4], à Toulouse.
- CEA-IRFU, Institut de recherche sur les lois fondamentales de l'Univers du CEA, à Saclay.
- LAL, Laboratoire de l'accélérateur linéaire (CNRS/Université Paris-Sud), à Orsay.
- LERMA, Laboratoire d'étude du rayonnement et de la matière en astrophysique et atmosphères (Observatoire de Paris/CNRS/ENS/Université Cergy-Pontoise/Sorbonne Université), à Paris.
- LPSC, Laboratoire de physique subatomique et de cosmologie (Université Grenoble Alpes/CNRS/Grenoble INP), à Grenoble.
- CC-IN2P3 du CNRS, Centre de calcul de l'Institut national de physique nucléaire et de physique des particules (IN2P3) du CNRS, à Villeurbanne.
[2] Expansion très brutale aux tous premiers âges de l’univers au cours de laquelle les grumeaux ont été engendrés.
[3] 95% de l'univers est constitué de matière et d’énergie noires dont la nature n’est pas connue. Les chercheurs ne les détectent que par son influence gravitationnelle. L'apport indépendant et crucial de la polarisation est donc bienvenu pour mieux comprendre le fonctionnement de l’univers.
[4] L’IPAG fait partie de l'Observatoire des sciences de l'Univers de Grenoble et l’IRAP de l’Observatoire Midi-Pyrénées.
Mis à jour le17 juillet 2018
Vous aimerez peut-être aussi
- The Conversation Junior : "Alec et Eloa : « Pourquoi est-ce que quand on monte en haut d’une montagne il fait plus froid alors qu’on se rapproche du Soleil ? »"
- The Conversation : "Images de science : Le métal qui se prenait pour du verre"
- The Conversation : "Tuer pour la science ? Une nouvelle expérience de Milgram"
- The Conversation : "Le rêve de Jeff Bezos ou peut-on, vraiment, rajeunir en reprogrammant nos cellules ?"